by Angela Guess
A recent article out of the company reports, “Looker, the business intelligence platform that is powering data-driven companies, today announced support for Presto and Spark SQL as well as updates to its support for Impala and Hive. Looker allows enterprises to describe, define and analyze the data where it lives, significantly eliminating the time, expertise, and the cost burdens of moving the data. Today’s announcement expands Looker’s list of supported data warehouses, such as Amazon Redshift, and ensures complete compatibility with the Amazon Elastic MapReduce (Amazon EMR) suite of frameworks.”
The article continues, “Until today, it was painfully slow to do data analysis in Hadoop. Typically, data analysts had to move subsets of data into data warehouses to perform analysis and, as a result, business teams rarely had direct access. Today, thanks to advances in the SQL query engines, big data technologies are finally accessible for business analytics and the vision of Hadoop as more than a data store is now a reality. Data analysts can now build a data model across all their data in Hadoop or other databases, easily transform raw data into meaningful metrics and allow business teams to utilize years of stored data in Hadoop. ‘With Looker on Hadoop, data analysts can create a single source of truth for the entire enterprise, so every business team can quickly ask and answer their own questions,’ said Frank Bien, CEO at Looker. ‘Now all decision-makers, not just a handful of data scientists, can utilize the valuable data in Hadoop to drive better business decisions’.”
photo credit: Looker