Advertisement

Graph Databases vs. Key-Value Databases

Graph databases and key-value databases have very different features and are used for accomplishing different tasks. Key-value databases are streamlined and fast, but are limited and not as flexible. Graph databases, on the other hand, are very flexible and great for research, but not terribly fast. Both typically use a non-relational foundation. The two key […]

Scaling the Analytics Team: Developing Key Roles

In an enterprise analytics team, different roles exist to fill different needs, and those needs must be met in order to be successful. Launching an analytics program doesn’t necessarily require a massive influx of personnel before producing usable insights from data, yet it’s important that critical roles are filled, whatever the size of the team. […]

Optimizing the Data Warehouse

The data warehouse, a relational database technology, makes all enterprise information actionable, and will continue to be prominent as a Data Architecture component. In the 2000s, a typical business would consolidate data from multiple relational databases, centralizing all this information through a data warehouse, and consequently streamlining business tasks. However, the business context has shifted […]

Understanding DataOps

DataOps (data operations) has its roots in the Agile philosophy. It relies heavily on automation, and focuses on improving the speed and accuracy of computer processing, including analytics, data access, integration, and quality control. DataOps started as a system of best practices, but has gradually matured to a fully functional approach for handling data analytics. […]

Data Virtualization Use Cases

Data virtualization, in a nutshell, utilizes data integration without replication. In this process, a single “virtual” data layer is created to provide data services to multiple users and applications at the same time. Why Data Virtualization Is a Necessity for Enterprises explains how data virtualization helps tackle data movement challenges by making a virtual dataset […]

Deep Learning and Analytics: What is the Intersection?

Emergent artificial intelligence (AI) technologies, especially the automated algorithms populating analytics platforms, are impacting and reshaping the world of business analytics. The underlying connections between traditional analytics processes and the disruptive technologies will make you cheer if you happen to be a data scientist or a business analyst — because your redefined role in the […]

Hybrid Database Architectures Lead the Way

Hybrid databases have evolved in the last decade, with a focus on cloud environments. In 2013, Gartner created the term “Hybrid Transaction/Analytical Processing” (or HTAP), which is defined by Gartner as: “An emerging application architecture that ‘breaks the wall’ between transaction processing and analytics. It enables more informed and ‘in business real time’ decision making.” […]