by Angela Guess
According to a recent press release, “Continuum Analytics, H2O.ai, and MapD Technologies have announced the formation of the GPU Open Analytics Initiative (GOAI) to create common data frameworks enabling developers and statistical researchers to accelerate data science on GPUs. GOAI will foster the development of a data science ecosystem on GPUs by allowing resident applications to interchange data seamlessly and efficiently. BlazingDB, Graphistry and Gunrock from UC Davis led by CUDA Fellow John Owens have joined the founding members to contribute their technical expertise. The formation of the Initiative comes at a time when analytics and machine learning workloads are increasingly being migrated to GPUs. However, while individually powerful, these workloads have not been able to benefit from the power of end-to-end GPU computing. A common standard will enable intercommunication between the different data applications and speed up the entire workflow, removing latency and decreasing the complexity of data flows between core analytical applications.”
The release goes on, “At the GPU Technology Conference (GTC), NVIDIA’s annual GPU developers’ conference, the Initiative announced its first project: an open source GPU Data Frame with a corresponding Python API. The GPU Data Frame is a common API that enables efficient interchange of data between processes running on the GPU. End-to-end computation on the GPU avoids transfers back to the CPU or copying of in-memory data reducing compute time and cost for high-performance analytics common in artificial intelligence workloads. Users of the MapD Core database can output the results of a SQL query into the GPU Data Frame, which then can be manipulated by the Continuum Analytics’ Anaconda NumPy-like Python API or used as input into the H2O suite of machine learning algorithms without additional data manipulation. In early internal tests, this approach exhibited order-of-magnitude improvements in processing times compared to passing the data between applications on a CPU.”
Read more at Continuum.io.
Photo credit: Continuum